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Abstract

The relative merits of different isotopic enrichment strategies that might be used in solid state NMR protein
structure determinations are explored. The basis for comparison of these merits is the determination of the relative
uncertainties in rates measured by a generalized dipolar recoupling experiment. The different schemes considered
use 13C, 15N and 2H labeling of ubiquitin with homonuclear magnetization-transfer type experiments under magic-
angle spinning (MAS). Specific attention is given to the sensitivity of the predicted relative precisions to variation
in natural nuclear density distribution and noise levels. A framework is suggested to gauge the precision of meas-
urement of a given dipolar coupling constant, and the potential for a set of such measurements to constrain structure
calculations is explored. The distribution of nuclei in homonuclear 15N and 1H dipolar recoupling spin-exchange
experiments appear to provide the most promising tertiary structure information for uniformly labeled ubiquitin.

Introduction

NMR is a powerful spectroscopic tool by virtue of
its sensitivity to the local environment of nuclei. Its
conjugate weakness is a lack of sensitivity to global
molecular relationships. Yet it is the nuclear dipole–
dipole interactions which are a function of long range
distances that are most important in solving macro-
molecular structure. Solid state NMR methods in com-
bination with various isotopic labeling strategies have
been used to measure such long range individual dis-
tances with unparalleled precision. Specific pairwise
labeling has been particularly successful at determin-
ing important distance constraints for defining bind-
ing site geometry in enzyme-substrate (Christensen
and Schaefer, 1993) and more recently receptor-
ligand complexes (Watts, 1999). Related approaches
have also made significant contributions to our under-
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standing of amyloid fibril structure (Benzinger et al.,
1998; Tycko, 2001). The selective labeling approach
has been impressively extended to the full structure
determination of the membrane resident gramicidin
channel, using multiple samples to provide a suffi-
cient number of constraints (Ketchem et al., 1996). In
another landmark application, rotational echo double
resonance (REDOR) of a single incorporated 13C/19F
pair was employed to monitor a ligand-binding in-
duced structural change of a cell signaling receptor in
an intact cell membrane preparation (Murphy et al.,
2001).

For macromolecular systems in which an import-
ant structural question can be addressed using a single
spin pair, and in which the chemistry of this incorpor-
ation is not a major impediment, such approaches will
continue to be important. However, from a practical
and economic perspective, the quantity of structural
information per sample is low. If solid state NMR is
to become a mainstream technique and complement
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solution NMR and single crystal diffraction for protein
structure work, it must evolve to make use of more
extensive isotopic enrichment as is already common
in solution NMR.

Several classes of important problems motivate de-
velopment of such methods. By definition amyloid fib-
ril structure and consequent understanding of protein
misfolding will remain intractable by solution NMR
and diffraction techniques. The fundamental intercon-
nectedness of structure and function in membrane-
associated proteins is most meaningfully addressed
in their native environment, also difficult to address
without solid state NMR. Of considerable practical
importance are efforts to elucidate structure of bound
ligands in pharmaceutically interesting complexes.
Samples for solid state NMR experiments on such
complexes can employ soaking techniques common
to diffraction sample preparations, while obviating the
need for large well-ordered crystals. While the solu-
tion NMR technique of transferred NOE has proven
useful (Schalk-Hihi et al., 1998; Inooka et al., 2001) it
is limited to ligands with sufficiently short occupancy
times. For all the above cases, full isotopic enrichment
of macromolecules, subunits, or ligands can be easily
and relatively inexpensively accomplished such that
many useful constraints are in theory simultaneously
measurable by solid state NMR.

Realizing the potential of solid state NMR in this
regard has, however, not been trivial. Lower sensitivity
and resolution than solution NMR, lack of sequen-
tial assignment methods applicable to large molecules,
and the absence of methods for determining large sets
of structural constraints in isotopically enriched pro-
teins have all been hurdles. Rapid progress has been
made recently which addresses sensitivity, resolution,
and assignment problems. The advent of solid state
NMR instrumentation operating at fields over 18 Tesla
has brought sample quantity requirements down to a
few hundred nanomoles, similar to that of solution
NMR (McDermott et al., 2000). While solid state 1H
NMR still does not provide particularly high resol-
ution for large spin systems, line widths have been
narrowed to the extent that its use in indirect detection
methods for sensitivity enhancement of heteronuclei
has been demonstrated (Ishii et al., 2001). Multinuc-
lear sequential and side-chain assignment strategies
have been developed in several laboratories, and have
proven successful upon application to small proteins
such as BPTI (McDermott et al., 2000), the SH3 do-
main of α-spectrin (Pauli et al., 2001; Rossum et al.,
2001), and ubiquitin (Straus et al., 1998; Igumen-

ova et al., 2003). Generally applicable techniques for
structure determination in multiply-labeled spin sys-
tems have also been developed in a number of labor-
atories, with proof-of-principle experiments focusing
on small model peptides (e.g., Michal and Jelinski,
1997; Nomura et al., 2000; Jaroniec et al., 2001). The
state of the art is such that sensitivity, resolution and
spectral assignment are no longer the insurmountable
hurdles that once seemed to exclude solid state NMR
as a method for structure determination of even a small
protein as evidenced by the first such report (Castellani
et al., 2002).

In this paper we concentrate on one of the next
steps, using solid state NMR to extract large num-
bers of distance constraints for an entire protein. To
succeed, one needs to obtain ample, accurate, precise,
and structurally meaningful data while using the few-
est number of samples possible. While the accuracy of
distances determined in these types of solid state NMR
experiments has been discussed for small spin systems
(Hodgkinson and Emsley, 1999), our goal here is to
explore the difficulties in the context of an entire pro-
tein. Our motivation and philosophy are generally, and
in part specifically, similar to that presented by Tycko
(1996) in his discussion of how resolution limits the
applicability of solid state NMR to smaller macro-
molecules. Many aspects of the approach taken here
were also inspired by related solution NMR studies,
such as the work of Liu et al. (1995) in their discus-
sion of how more realistic distance limits could be
determined for nOes measured by solution NMR, and
Dellwo (1994) in their discussion of error reduction in
rate matrix analysis of NOESY spectra.

There are several experimental approaches to con-
sider. Biochemically there are uniform and specific
13C, 15N, and 1H labeling (of perdeuterated protein)
protocols at one’s disposal, which can be coupled with
several complementary spectroscopic techniques. A
few of the obvious and easily achieved labeling pat-
terns are chosen both to serve as examples in our
analysis and to characterize a few of the factors gov-
erning the precision of a given experimental approach.
We focus on distance-dependent magnetization trans-
fer rates measured by homonuclear multidimensional
solid state MAS dipolar recoupling experiments ana-
logous to the solution phase NOESY method. REDOR
(Gullion and Schaefer, 1989) and TEDOR based het-
eronuclear distance measurements (Michal and Jelin-
ski, 1997), while providing complimentary inform-
ation and another approach to the problems to be
discussed, are not readily treated in the fashion to be
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introduced here. As such these techniques will not be
considered further in any depth.

We begin with specific qualitative consideration of
the distributions of internuclear distances and dipolar
couplings in a model protein, which helps to better
define the difficulties encountered with different iso-
topic enrichment patterns. The model system chosen
for analysis is human ubiquitin. Ubiquitin is a 76-
residue, 21% α-helix, and 43% β-sheet protein which
has been extensively characterized by X-ray crystallo-
graphy (Alexeev et al., 1994), solution NMR (Weber
et al., 1987) and recently solid state NMR (Igumen-
ova et al., 2003). We use atomic coordinates from the
1.8 Å crystal structure deposited in the PDB under
1UBI, augmented by 1H coordinates calculated using
the program Reduce (Word et al., 1999), and take the
structure to be static. We also compare the relative
precision with which each dipolar coupling might be
measured by comparing a given coupling to the other
couplings experienced by the same nuclei. Sorting
couplings in this fashion allows us to recognize which
couplings might be reliably measured and also provide
tertiary structural information.

In the second section we provide a more critical
comparison where the effects of the nuclear distri-
bution and experimental noise on the precision of
the measured dipolar couplings are quantitatively in-
vestigated by computation. We employ one conceiv-
able way to assess the impact of noise and nuclear
distribution on the quality of data for an arbitrary
homonuclear mixing experiment. Based on a protein
structure from a PDB file, magnetization exchange
data is simulated using a rate matrix approach for
each of several mixing times, and repeatedly seeded
with Gaussian random noise values over many Monte
Carlo cycles. In each cycle, the noise-seeded data
is analytically transformed to an ‘experimental’ rate
matrix from which the corresponding ‘experimental’
internuclear distance matrix can be determined. Ana-
lysis of the resulting distributions of each measured
rate characterizes the potential for the respective spin
system to provide accurate and meaningful structural
constraints.

Finally we tie the two sections together by explor-
ing the interplay of nuclear spatial distribution and
finite signal-to-noise such that all can be considered
at once for their impact on the precision of distances
providing tertiary contact information.

Nuclear spin distributions and their implications
for magnetization exchange kinetics

We begin by stepping into the position of the invest-
igator who requires sufficiently numerous, accurate,
and meaningful distance measurements with which
to constrain protein structure refinement calculations,
and wishes to obtain these constraints by measure-
ment of internuclear dipolar coupling constants using
solid state NMR. Of the many possibilities available
we consider only a few of the most generic isotopic
enrichment protocols. The most widely used are 100%
enrichment of 13C and/or 15N, and schemes for produ-
cing a dilute proton pool. The last scheme assumes
a perdeuterated protein preparation, and subsequent
back-exchange of all backbone amide and labile side
chain protons. This approach has been shown to
provide useful resolution even in a directly detected
proton dimension for small peptides (Reif et al., 2001),
and has yielded good distance constraints for small
protein (Reif et al., 2003). A further twist is the select-
ive incorporation of methyl protons according to the
synthesis strategies of Rosen et al. (1996) or Goto et al.
(1999). In the former technique the alanine, valine,
leucine, and isoleucine γ2 methyls are selectively pro-
tonated, while the latter results in valine, leucine,
and isoleucine δ1 methyls being selectively protonated
instead. The approaches have proven facile and bene-
ficial to solution NMR, as per Hajduk et al. (2000).
For our analysis we will consider 13C-13C contacts
measured in uniformly 13C-enriched protein, 15N-15N
couplings in uniformly 15N-enriched protein, 1H-1H
contacts in protein where the proton pool is reduced to
include exchangeable protons only, and 1H-1H con-
tacts in protein where the proton pool alternatively
includes both exchangeable and methyl protons (as per
Rosen et al., 1996).

Comparison of the pairwise internuclear distance
distribution functions for the nuclei to be recoupled
in these different isotopic variants of ubiquitin show
them to be qualitatively different. Figures 1A, 2A and
3A show these radial distribution functions as histo-
grams for all 13C-13C, 15N-15N and 1H-1H pairings
respectively. As density corresponding to predictable
geometry is of little interest, the 13C-13C 1-bond
and 2-bond contacts, 15N-15N distances within the
guanidino and imidazole groups, and geminal 1H-1H
contacts in amino and methyl groups are denoted. That
radial density which, if known, would actually help
to constrain structure beyond that which is handled
by common molecular dynamics restraints, is shown
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Figure 1. Distributions of calculated 13C-13C (A) internuclear dis-
tance, (B) dipolar coupling constants, and (C) ratios in ubiquitin.
Histogram (left scale) and integral (right scale) plotted for all nuc-
lear pairs (thin) and for pairs separated by greater than two bonds
(bold). Integrals are running sums over the histograms.

with thick lines. The thin versus thick integral lines
provide a measure, up to any given distance, of how
many internuclear contacts there are, and what frac-
tion of them are potentially useful in defining tertiary
structure, respectively.

As dipolar couplings and not internuclear distances
are measured in solid state NMR, it is instructive to re-
cast the nuclear radial distance frequency distributions
as distributions of dipolar couplings. The transforma-
tion given the usual definition (in Hz) of the dipolar
coupling constant dij between a spin i and a spin j is
straightforward:

dij = µoγiγj h̄

8π2r3
ij

(Hz). (1)

For a pair of protons at a separation of 1 Å this is
120.120 kHz. These distributions are shown in Figures
1B–3B for the cases under consideration. Here, one’s
attention should be drawn to the relative strengths of
less structurally meaningful couplings, versus those
that would need to be accurately measured to constrain

Figure 2. Distributions of calculated 15N-15N (A) internuclear dis-
tance, (B) dipolar coupling constants, and (C) ratios in ubiquitin.
Histogram (left scale) and integral (right scale) plotted for all nuc-
lear pairs (light) and for pairs separated by greater than two bonds
(bold). Integrals are running sums over the histograms.

structure calculations. Putting these numbers on a di-
polar coupling scale emphasizes the compression of
the scale towards zero, and that the smallest numbers
are the most desirable to determine.

The distribution of internuclear dipolar couplings
alone does not paint the entire picture. In a magnet-
ization exchange experiment, transfer rates are often
proportional to the square of the dipolar coupling
constant (Henrichs et al., 1986; Helluy et al., 2000;
Dusold et al., 1997). Further, consideration of two
extremes demonstrates the need to view transfer rates
in the context of their local spin systems. While the
coupling for an isolated nuclear pair can be accurately
measured, the coupling between a pair of spins in
which each has large couplings to other nuclei is more
difficult to determine. One conceivable metric of how
difficult a particular coupling might be to measure is
the ratio of that transfer rate to the sum of all other
transfer rates experienced by the two spins involved,
which we denote �:
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Figure 3. Distributions of calculated exchangeable plus select
methyl 1H-1H (A) internuclear distance, (B) dipolar coupling con-
stants, and (C) ratios in ubiquitin. Histogram (left scale) and integral
(right scale) plotted for all nuclear pairs (light) and for pairs separ-
ated by greater than two bonds (bold). Integrals are running sums
over the histograms.

�ij = d2
ij

d2
ij +

∑
k �=i,j

d2
kj +

∑
i,j �=k

d2
ik

. (2)

The sums in the denominator should be restricted to
some maximum distance. In practice a maximum ra-
dius can be chosen, or a single molecule or a unit cell
used to limit the sum. Our conclusions are insensitive
to this choice, and so a single molecule was chosen
as a matter of convenience. If dipolar couplings are
measured from magnetization exchange in the initial
rate regime, one might expect such a ratio to correlate
reasonably to the spread of the available observable
magnetization over several different spin centers as the
number of significant couplings increases. Expressed
in this manner, the extent to which meaningful coup-
lings are at a kinetically competitive disadvantage is
then apparent. This recasting of dipolar couplings as a
distribution of ratios (�) is shown for comparison in
Figures 1C, 2C and 3C. It will be seen later that these

ratios offer a reasonable means for gauging a priori
those couplings that one may hope to measure with
useful precision for a particular enrichment pattern.

The larger the ratio, the more dominant the coup-
ling between the two constituent nuclei. In many
cases, however, structurally meaningful couplings are
less dominant components of their spin systems, and
occur at lower ratio values. We expect that there would
be some minimum � value below which a coupling
will be too unreliable. Postponing justification for the
moment, we use lower limits of 0.02 and 0.01 for
the sake of illustration, where large typical couplings
have � values ranging from just under 1.0 to 0.2 de-
pending on the particular nuclear distribution. The
impact of imposing these minimum �ij thresholds
is easily visualized using the contact maps in Fig-
ure 4. Couplings that will constrain tertiary structure
appear as off-diagonal elements, while those on the
diagonal define intra-residue contacts. Contacts that
define secondary structure and the packing of sec-
ondary structure elements can easily be discerned in
the more densely populated contact maps. Fattened
stretches on the diagonal correspond to α-helix, a
series of off-diagonal contacts forming a solid line
segment with positive slope corresponds to parallel β-
sheet, and a series of off-diagonal contacts forming a
solid line segment with negative slope corresponds to
anti-parallel β-sheet.

Discussion of these distributions is also aided by
considering specific examples from each of the distri-
butions. In Tables 1 and 2 the contacts for an α-helix
and β-sheet sidechain carbon, backbone nitrogen, ex-
changeable backbone proton, and sidechain proton are
specifically examined. Chosen for this purpose are
lys27, the fifth residue of twelve in an α-helix, and
ile13, the fourth residue of an eight residue β-strand
which runs antiparallel with a neighbor strand. A rel-
atively remote sidechain carbon is chosen in order to
bias these examples towards a higher proportion of
meaningful contacts, whereas a backbone nitrogen is
chosen as it is backbone nitrogens which dominate the
15N population. Specific contacts are given for several
of the largest couplings.

13C homonuclear contacts

As expected, the radial distribution of homonuclear
carbon contacts in uniformly labeled 13C ubiquitin
is significant at distances corresponding to one and
two bond separation (Figure 1A). Density increases at
3.8 Å owing to Cαn−Cαn+1 contacts. The inverse cubed
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Table 1. Dipolar coupled neighbors for a selected carbon and nitrogen in an α-helix (lys27) residue of ubiquitin

Neighborsa Connectivity dij (Hz) Neighborsa Connectivity dij (Hz)

13C neighbors to Lys27 15N 13C neighbors to Lys27 13Cγ

Val26 C 1 bond 1320 1 Lys27 Cδ 1 bond 2173

Lys27 Cα 1 bond 1023 2 Lys27 Cβ 1 bond 2165

Val26 Cα 2 bond 220 3 Lys27 Cα 2 bond 467

Lys27 Cβ 2 bond 209 4 Lys27 Cε 2 bond 466

Lys 27 C 2 bond 207 5 Lys27 C n 133

Lys27 Cγ n 103 6 Leu43 Cδ1 n+16 127

Val26 Cγ n−1 99 7 Gln41 Cδ n+14 111

Asn25 Cγ n−2 88

15N neighbors to Lys27 15N 15N neighbors to Lys27 13Cγ

1 Ala28 N n+1 60 Lys27 N n 103

2 Val26 N n−1 58 Lys27 Nζ n 54

3 Lys29 N n+2 17 Gln41 Nη2 n+14 30

4 Asn25 N n−2 16 Ala28 N n+1 23

5 Glu24 N n−3 11 Val26 N n−1 19

6 Ile30 N n+3 11 Asn25 N n−2 15

7 Gln41 Nε2 n+14 8

1H neighbors to Lys27 1H(N) 1H neighbors to Lys27 1H3(Nζ)

Val26 H(N) n−1 6119 Leu43 H(N) n+16 2386

Ala28 H(N) n+1 6083 Ile23 H3(Cγ2) n−4 2271

Val26 H3(Cγ1) n−1 2875 Arg72 H2(Nη1) n+45 2188

Lys29 H(N) n+2 1684 Asp52 H(N) n+25 1830

Asn25 H(N) n−2 1676 Arg72 H2(Nη2) n+45 1731

Ile23 H3(Cγ2) n−4 1663 Gln41 H(N) n+14 1346

Leu43 H3(Cγ2) n+16 1563 Gln49 H2(Nε2) n+22 1174

Val26 H3(Cγ2) n−1 1356 Leu43 H3(Cδ1) n+16 1062

Ile30 H(N) n+3 1099 Arg42 H(N) n+15 671

Glu24 H(N) n−3 1038 Leu50 H(N) n+23 551

Ala28 H3(Cβ) n+1 1028

Gln41 H2(Nε) n+14 708

∗Numbered nuclei correspond to peak labels in Figures 13 and 14.

relationship between internuclear distance and dipolar
coupling constant causes a compression toward zero
between the distributions in distance and the dipolar
coupling constants (Figure 1B). Nearly every carbon
in the protein has at least one other carbon at the
single bond and the two bond distance. This is readily
manifest upon recasting the couplings as � ratios (Fig-
ure 1C). There are no meaningful homonuclear carbon
contacts above a � value of 0.02. Of the 4 meaningful
contacts with ratio above 0.01 (all of which are less
than 0.013) over 4 residue pairs (Figure 4B), all are
intra-residue contacts. The maximum distance of these
contacts is 2.8 Å.

Considering the specific examples in Tables 1 and
2, only the sidechain carbon of the β-strand residue has

any meaningful 13C-13C contacts at significant relative
couplings (Table 2). Meaningful contacts for the α-
helix residue carbon are made at best at only 6% of
that carbon’s two largest couplings (Table 1).

15N homonuclear contacts

In contrast to the carbon distribution, only in the
arginine and histidine side chains can two nitrogen
nuclei be found separated by less than three bonds
(Figure 2A) in uniformly 15N enriched ubiquitin. All
15N-15N radial density centered at 2.6 and 3.4 Å rep-
resent separation between backbone amides, which are
predominantly α-helix and β-sheet, respectively. The
next peak of density centered at 4.2 Å is dominated by
Nn-Nn+2 α-helix contacts, but includes tertiary contact
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Table 2. Dipolar coupled neighbors for a selected carbon and nitrogen in a β-sheet (ile13) residue of ubiquitin

Neighborsa Connectivity dij (Hz) Neighborsa Connectivity dij (Hz)

13C neighbors to Ile13 15N 13C neighbors to Ile13 13Cδ1

Thr12 C 1 bond 1364 1 Ile13 Cγ1 1 bond 2152

Ile13 Cα 1 bond 1030 2 Ile13 Cβ 2 bond 474

Thr12 Cα 2 bond 225 3 Ile13 Cγ2 n 306

Ile13 C 2 bond 209 4 Lys33 Cδ n+20 256

Ile13 Cβ 2 bond 198 5 Lys33 Cγ n+20 217

Ile13 Cγ2 n 160 6 Glu34 Cγ n+21 156

Thr12 Cγ2 n−1 91 7 Ile13 Cα n 130

Thr12 Cβ n−1 81 Leu15 Cδ2 n+2 110

Ile13 Cγ1 n 63 Ile13 C n 103

Val6 n−8 53 Leu15 Cγ n+2 93

15N neighbors to Ile13 15N 13C neighbors to Ile13 13Cδ1

1 Thr12 N n−1 30 Thr14 N n+1 30

2 Thr14 N n+1 28 Ile13 Nζ n 27

3 Val5 N n−8 16 Lys33 Nζ n+20 24

4 Lys6 N n−7 11 Glu34 N n+21 21

5 Lys11 Nζ n−2 8 Ile30 N n+17 18

6 Thr7 N n−6 7 Leu15 N n+2 16

1H neighbors to Ile13 1H(N) 1H neighbors to Ile13 1H3(Cγ2)

Ile13 H3(Cγ2) n 13348 Ile13 H(N) n 13348

Val5 H(N) n−8 4706 Val5 H3(Cγ1) n−8 3726

Val5 H3(Cγ1) n−8 1696 Val5 H(N) n−8 2293

Thr12 H(N) n−1 1409 Lys11 H3(Nζ) n−2 2251

Thr7 H(N) n−6 1376 Ile30 H3(Cγ2) n+17 2097

Thr14 H(N) n+1 1315 Val5 H3(Cγ2) n−8 1290

Lys6 H(N) n−7 1048 Thr7 H(N) n−6 1170

Val5 H3(Cγ2) n−8 929 Leu69 H3(Cδ1) n+56 1167

Thr12 H(Cγ1) n−1 923 Thr7 H(Oγ1) n−6 1111

Lys11 H3(Nζ) n−2 721 Thr12 H(N) n−1 1068

Thr7 H(Oγ1) n−6 714 Thr14 H(N) n+1 891

∗Numbered nuclei correspond to peak labels in Figures 13 and 14.

of no particular classification, as does the rest of the
range. The distribution of calculated dipolar couplings
looks similar (Figure 2B), except for the contraction
of the distribution towards zero.

The bimodal distribution of couplings calculated
for Nn to Nn±1 contacts seen in Figures 2A and 2B
indicates the expected correlation between a residue’s
φ and ψ dihedral angles and the Nn to Nn±1 dipolar
coupling, analogous to the relative coupling intens-
ities in the NOESY fingerprint (H(N) vs. H(Cα))
region. If one constructs such a map using protein
databank coordinates for a few representative proteins,
the expected correlations are quite clearly observed.
Rotation about φ has little bearing on the Nn − Nn+1
coupling, while rotation about ψ does have a reason-

ably strong affect. Although the Nn − Nn+1 coupling
does not determine a unique combination of dihed-
ral angles, it does discriminate between α-helices and
β-sheets.

For backbone nitrogens, the strongest couplings
are with the preceding and following nitrogen along
the chain, and these couplings figure prominently
against competing couplings in their spin systems. All
but one of the 75 sequential contacts are found above
�ij = 0.09 where the strongest tertiary contact is
found. There are several tertiary contacts below �ij =
0.09 but still above 0.01 and 0.02 which would provide
significant tertiary structure constraints while at the
same time being quite measurable (at least from the
standpoint of limited interference from spin diffusion).
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Figure 4. (A) Reference contact map showing inter-residue correl-
ations corresponding to constituent carbons with internuclear dis-
tances of 5Å or less. (B–H) contact maps indicating residue-residue
correlations corresponding to constituent internuclear contact ratios
above (B) 0.01 for 13C-13C, (C and D) contact ratios above 0.02
and 0.01 respectively for 15N-15N, (E and F) contact ratios above
0.02 and 0.01 for exchangeable 1H-1H, and (G and H) contact ratios
above 0.02 and 0.01 for exchangeable plus select methyl 1H-1H.

Above a ratio threshold of 0.02 (Figure 4C) there are
42 contacts making 42 non-sequential inter-residue
contacts, and at a ratio threshold of 0.01 (Figure 4D)
there are 98 couplings making 92 non-sequential inter-
residue contacts. The maximum distance correspond-
ing to any of the contacts above a ratio of 0.01 is
7.4 Å.

The numerous non-sequential inter-residue con-
tacts help to define the packing of all secondary
structure elements, even at ratios above 0.02. Con-

sidering the specific examples in Tables 1 and 2, it
is seen that the strongest several 15N couplings define
the α-helix (Table 1). At lower �ij are tertiary con-
tacts that indicate the packing of the helix with other
secondary structures. For the β-strand (Table 2), the
strand’s register with other strands is indicated at fairly
large couplings relative to the strongest couplings to
sequential backbone nitrogens. The utility of homo-
nuclear 15N couplings to help define tertiary structure
for the case of β-sheet was recently demonstrated by
Castellani et al. (2002).

1H homonuclear contacts

The distributions of exchangeable plus select methyl
protons with respect to internuclear distance (Fig-
ure 3A), dipolar couplings (Figure 3B), and �ij ratios
(Figure 3C) are somewhat similar (on relative scales)
to the homonuclear 15N case. While some ranges of
couplings and ratios are dominated by one general
category of contact, e.g. 4845–9360 Hz, which are
primarily H(N)n − H(N)n+1 couplings, tertiary con-
tacts are spread throughout the full range of dipolar
constants and ratios. While the largest tertiary con-
tact ratio is 0.68, the bulk of tertiary contacts occur
at ratios less than 0.20. Of the 161 contacts above
�ij = 0.02 (Figure 4G), 48 are internal to 29 residues,
while there are 45 sequential and 68 non-sequential
contacts among 90 unique residue pairs. For the 258
couplings above �ij = 0.01 (Figure 4H), there are 56
intra-residue contacts among 30 residues, and 74 se-
quential plus 128 non-sequential contacts among 145
unique residue pairs. The maximum distance corres-
ponding to any of the contacts above a ratio of 0.01
is 5.5 Å. The numerous non-sequential inter-residue
contacts help to define the packing of all secondary
structure elements, even at ratios above 0.02.

If the proton pool is reduced to exchangeable pro-
tons only, the 123 contacts above a ratio of 0.02 (Fig-
ure 4E) are comprised of 14 internal to 14 residues,
and 63 sequential and 46 non-sequential contacts
among 99 unique residue pairs. For the 175 coup-
lings above ratio 0.01 (Figure 4F), there are 15 internal
contacts in 14 residues, and 75 sequential plus 85 non-
sequential contacts among 160 unique residue pairs.
The maximum distance corresponding to any of the
contacts above a ratio of 0.01 is 6.2 Å.

As with 15N-15N couplings, the numerous non-
sequential contacts help to define the packing of all
secondary structure elements, even at ratios above
0.02. For homonuclear 1H contacts among exchange-
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able and methyl protons, we see couplings to the α-
helix amide proton (Table 1) mostly define secondary
structure, while many strong couplings of comparable
strength to the lysine amine protons truly constrain ter-
tiary structure. For the β-strand residue, contacts to the
amide proton appear to help define the residue’s rela-
tionship with another β-strand more so than its own
strand (Table 2). The side chain methyl protons show
these tertiary contacts as well as others, which help
pack this strand against a neighbor helix.

Consequences for structure determination by solids
NMR

On the basis of the �ij ratios, experimental ap-
proaches which employ magnetization transfer under
MAS conditions among nitrogen in uniformly 15N
enriched protein, and 1H-1H spin exchange in appro-
priately deuterated protein, appear to offer the largest
number of dipolar couplings that will accurately con-
strain tertiary structure, at least from the viewpoint
of limited interference from spin diffusion. 13C-13C
spin exchange experiments have serious difficulties on
this qualitative basis with providing tertiary structural
constraints. However their weakness in this regard is
a strength in resonance assignment experiments where
long range couplings would in fact be a hindrance.

Choosing among the various labeling schemes un-
der discussion depends upon additional factors. 1H-1H
spin exchange experiments will suffer from interfer-
ence by dipolar couplings to and relay of magnetiza-
tion through water, as well as poor resolution in the
1H spectral dimension. This is not a problem for 15N-
15N dipolar recoupling methods, but such experiments
instead suffer from low sensitivity if 15N detection is
used, and perhaps more importantly, technical chal-
lenges from recoupling the small dipolar couplings
one wishes to measure of only tens of Hz in size.
Which set of limitations provides the lesser handicap
to a large extent will depend upon the system and the
questions asked.

One of course can use the qualitative analysis
just presented to suggest and contrast additional iso-
tope enrichment schemes. Dilution of 13C to select
sites (Castellani et al., 2002) is one of many obvi-
ous ways for preserving the sensitivity and dispersion
of 13C solid state NMR, while ameliorating the det-
rimental effects, such as dipolar truncation (Hohwy
et al., 2002), that accompany uniform 13C enrich-
ment. 13C/15N heteronuclear dipolar coupling meas-
urements, while not being affected by spin diffusion

per se, do however suffer from dilution of available
magnetic moment between interesting and uninterest-
ing coupling partners, and this can be studied in a
similar fashion. As of this writing many different iso-
tope labeling schemes are being evaluated in a number
of different laboratories, as well as efforts to use se-
lective magnetization transfers in an effort to design
pulse sequences to effectively make subsets of spins
behave as more magnetically dilute than they actually
are. Our attention in the next sections will instead
be focused on ways to compare the relative accur-
acy of such competing approaches. As such we will
continue to consider only the labeling patterns just dis-
cussed. Of the many experimental factors that can be
involved, we will limit our attention to the influence
of finite signal-to-noise and spin diffusion on the pre-
cision of the distances that may be derived from NMR
magnetization exchange data in solids.

Theoretical background for a simple
computational model

The kinetics of magnetization exchange in a multi-spin
system under MAS conditions is largely a function
of the set of internuclear couplings. Measurement of
these couplings provides distance constraints that help
determine the parent molecular structure. Ideally one
would incorporate a full quantum mechanical simula-
tion of the mixing or dephasing process of a specific
solid state NMR experiment into a structure refine-
ment routine. Such a procedure can be specified, and
would include relaxation, motional dynamics, relevant
tensor interactions, and radio frequency field inhomo-
geneity, among other factors. Impressive progress has
been made in this respect (Bak et al., 2000). How-
ever, as a randomly ordered powder sample requires
consideration of thousands of individually oriented
crystallites and nuclear centers, such a complete treat-
ment is currently difficult for even a small protein.
We proceed by adapting a computational framework
which captures many of the important aspects of the
relevant physics, while remaining a practical approach
for dealing with as much as an entire protein. Our goal
is to provide a realistic analysis of the errors to be
expected in measurement of distances that could be
accessed in a homonuclear spin exchange experiment.

Our primary assumption supplies an efficient
means to handle the direct determination of distances
from complicated magnetization exchange kinetics.
Insofar as the exchange process is first-order, the
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problem may be modeled similarly to cross-relaxation
processes of a NOESY experiment. Although a con-
siderable simplification, the utility of the rate matrix
approach has been demonstrated in application to
modeling homonuclear magnetization transfer in ro-
tating powdered solids (Dusold et al., 1997; Helluy
et al., 2000; Goobes and Vega, 2002). The assump-
tion is most accurate in the initial rate regime and
with magic angle spinning rotor periods much shorter
than the exchange time. Modeling the time evolution
of the complex spin dynamics of a powder sample
by a single orientation-independent effective traject-
ory is not without precedent. Very good results have
also been obtained for the related problem of simu-
lating TEDOR magnetization transfer (Mueller, 1995)
between 13C and 15N spins in powder samples of
isotopically enriched peptides (Jaroniec et al., 2002).

When the dipolar couplings become comparable
to the available MAS rate such approximations are
no longer tenable, and the exchange rates strongly
depend upon both dipolar and shielding tensor orienta-
tions. Therefore, while we might expect this approach
to reflect the spin exchange dynamics for 13C nuclei
under MAS with rotation rates of tens of kilohertz,
1H-1H spin exchange is not expected to be modeled
nearly as well, unless the 1H are diluted by extens-
ive deuteration as we assume here. In our experience
the simulation of 1H-1H spin exchange in fully pro-
tonated material requires explicit consideration of the
variation of dipolar coupling with rotor position, and
a summation over crystallite orientations in a powder
sample. At present this is not feasible to include in
the computational studies here on an entire protein
molecule.

A series of secondary assumptions assigns values
to the rate matrix R elements Rij . Our calculations will
assume that the exchange rate Ri �=j between a pair of
spins i and j is simply proportional to the square of
the dipolar coupling constant dij , i.e. that Ri �=j = ξd2

ij

where ξ is a phenomenological scaling factor depend-
ent on the recoupling efficiency, among other factors
(Henrichs et al., 1986; Helluy et al., 2000; Dusold
et al., 1997). If ξ is assumed to be the same for all
spins involved, it simply scales the time scale of the
spin dynamics. As the dynamic range of the time scale
of our simulations is dictated by the largest couplings,
ξ is set to a characteristic large coupling 1/dmax for the
spin system under analysis:

Ri �=j = d2
ij

dmax
. (3)

For homonuclear carbon, we choose a one-bond 2250
Hz coupling, for homonuclear nitrogen the largest se-
quential backbone amide coupling of 64.5 Hz, and
for homonuclear protons the largest non-intra-methyl
or amino coupling of 16 kHz. We also then use the
constant to express mixing time as a dimensionless
quantity. A 13C-13C 200µs numeric mixing time then
is specified as 0.45 on the τ2250 scale.

The diagonal elements Rii are a combination of the
sum of all rates between site i and sites j , and the
longitudinal relaxation rate R1i = 1/T1i . If T1i is long,
the rates are negligible, and therefore

Rii = − 1

dmax

∑
j

d2
ij . (4)

This is reasonably accurate for all nuclei considered
here except methyl protons.

These assumptions are motivated by the need for
a computational model that will be accurate enough
to be relevant, yet fast enough to be repeated tens of
thousands of times on a system as large as small pro-
tein for the purposes of Monte Carlo analysis of errors.
For situations in which these assumptions are overly
simplistic, such as those caveats offered above, more
parameters and more complicated treatment would be
necessary. Our treatment for those cases must then be
regarded as a best case scenario as additional complex-
ity will result in even less precision than that which we
estimate.

For our simulations we adapt the relaxation matrix
theory of Macura and Ernst (1980) to the description
of a generic 2D homonuclear solid state magnetiza-
tion exchange experiment of the type (π/2)ϕ − t1 −
(π/2)±ϕ − τm − (π/2). For a solution sample this
would be a standard NOESY experiment, while in a
rotating solid some sort of dipolar recoupling is im-
plied during τm. The purpose of the model is to relate
2D peak intensities to magnetization exchange rates
and therefore the structure of the spin system. We first
define an initial z-polarization vector Mz(0) and an
equilibrium vector M0 as

Mz(0) =




Mz1

Mz2

...

Mzn




where Mzi = biMoi

and



245

M0 =




Mo1

Mo2

...

Mon




where Moi = ciM0. (5)

For each of n chemically distinct sites there are ci

magnetically equivalent spins, and each spin is taken
to have a thermal equilibrium magnetization M0. It
is convenient to account for magnetically equivalent
spins individually, and set all ci = 1. The individual
factors bi account for the possibility that the spins can
be variably polarized, such as when cross polarization
of 13C or 15N is used. The (π/2)ϕ − t1 − (π/2)±ϕ

portion of the sequence serves to produce frequency
labeled z-magnetization. Assuming that all the trans-
verse magnetization components are dephased by a
gradient or otherwise suppressed after the second π/2
pulse, the z-polarization vector has real components

M±
z (t1)i = ±Mz(0)i(cos ωi t1)e

−t1/T2, (6)

where it is assumed that transverse relaxation during
t1 can be accounted for by a single T2 for each type of
spin i.

This frequency-labeled magnetization mixes ac-
cording to the partial reinstatement of the dipolar
coupling during τm to an extent that depends upon
the specific pulse sequence employed, in addition
to other factors. For the isotope enrichment pat-
terns investigated here, exchange due to the scalar
coupling is not included as it is either not import-
ant, only becomes so for small couplings which are
not reliably measured, or can be suppressed by suit-
able modification of the pulse sequence. The evolu-
tion of the magnetization during τm is best cast in
terms of a difference-magnetization vector defined
as �Mz(t1, τm) = Mz(t1, τm) − Mo. This vec-
tor follows the usual system of coupled differential
equations(Macura and Ernst, 1980)

d�Mz

dt
= −R · �Mz. (7)

The solution to Equation 7 can be written in the usual
fashion as

�Mz(t1, τm) = e−Rτm · �Mz(t1, 0) =
P(τm) · �Mz(t1, 0). (8)

The difference-magnetization vector for the set of
spins evolves according to the spin-exchange propag-
ator P(τm), which is the indicated exponential func-
tion of the relaxation matrix R. Reading the magnetiz-
ation out at the end of the mixing period with a y-phase

π/2 pulse, the signal is proportional to Mx(t1, τm, t2)

which has components

M±
x (t1, τm, t2)i = M±

z (t1, τm)i(cos ωi t2)e
−t2/T2 , (9)

where

M±
z (t1, τm)i = ±

∑
j

P (τm)ijMz(t1)j−

∑
j

P (τm)ijMoj Moj + Moi . (10)

The ± corresponds to the experiments where the pro-
jection pulse is of phase −φ or +φ. As long as we
assume this phase alternation is performed with altern-
ate addition and subtraction of the resulting signals,
the last two terms in Equation 10, which would pro-
duce axial peaks, are eliminated. The resulting 2D
free induction decay h(t1, τm, t2), normalized to unit
intensity for a magnetization of magnitude, M0, has n

components given by

h(t1, τm, t2)i =
(

M+
xi

− M−
xi

2Moi

)
= (cos ωi t2)e−t2/T2i×




∑
j

cj bj · P(τm)ij · (cos ωj t1)e
−t1/T2j


 . (11)

Upon 2D Fourier transformation, the 2D spectrum is a
product of 1D lines, gji(ω1j ,ω2i ) = g1(ωj )g2(ωi),
where the line shape g1(ωj ) is centered in ω1 at
ωj , with a peak height and width determined by T2.
The integrated intensity S(ωj , τm,ωi ) of the peak at
the frequency coordinates (ω1,ω2) = (ωj ,ωi ) is
therefore

S(ωj , τm,ωi ) = cjbj · P(τm)ij . (12)

If one indexes the spins individually so that all the
cj are unity, and takes experimental care to ensure
that the spins are uniformly polarized so that all the
bj = b, there is a one-to-one correspondence between
matrix elements of the propagator and the integrated
intensities of the peaks in the 2D NMR spectrum.
Writing the matrix of all the auto-peak (Sii) and cross-
peak (Sij ) integrated intensities as S(τm), we see that
the 2D exchange spectrum experimentally determines
the propagator to within a multiplicative factor at the
time τm

1

b
S(τm) = P(τm). (13)
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Thus, for individually counted nuclei of equal initial
polarization and which experience negligible T1 relax-
ation, the 2D spectrum and the corresponding S(τm)

matrix will be symmetric and proportional to P(τm).
It is also important to note that for all longitudinal

relaxation rates R1i equal to a single value R1, explicit
series summation gives∑

j

P (τm)ij = e−R1τm. (14)

Thus for negligible R1 the sum of all elements across
each row vector in P(τm) is one, and the sum over all
matrix elements in P(τm) is n.

Just as in solution NMR refinement procedures
which incorporate relaxation matrix analysis (Ole-
jniczak et al., 1986; Borgias and James, 1988,
1990; Shriver and Edmondson, 1994), a simple
analytic transformation exists to convert S(τm) to
the experimentally-derived relaxation matrix R if the
NMR data has been normalized to satisfy S(τm) =
P(τm). Operationally this entails finding the magnetiz-
ation vector eigenbasis to diagonalize S(τm), dividing
the natural logarithm of the eigenvalues by τm, and
transforming the resultant matrix back to the original
magnetization vector basis:

R = 1

τm
ln[S(τm)]. (15)

Connection to experiment

When S(τm) is derived from actual experimental data,
this inversion suffers from finite signal-to-noise (S/N)
which introduces errors into the determination of rate
matrix elements Rij , and subsequent distances rij . We
incorporate this noise into our analysis by adding a
matrix of finite random noise N to the magnetization
matrix which has theoretically infinite signal-to-noise
(bounded only by machine precision):

SN(τm) = P(τm) + N. (16)

Computationally it is convenient to compute the
propagator P(τm) from a structure, and to add Gaus-
sian random noise specified by a root mean square
(r.m.s.) amplitude to generate a realistic ‘experi-
mental’ data set SN(τm). Since our assumptions in
essence put the intensity of all auto peaks to 1 at τm =
0, the r.m.s. amplitude of the added noise specifies the
signal to noise in the 2D spectrum.

The next step to making connection with experi-
mental reality is the relationship between the peak-
to-peak signal-to-noise (S/Nptp) measured in a 1D

spectrum, and the computationally more convenient
r.m.s. signal-to-noise (S/Nσ) in the 2D spectrum. We
will assume that the 2D data set is a collection of M

free induction decays (FID), acquired using a t1 incre-
ment of �t . Fourier transform of the directly detected
t2 dimension yields a series of M spectra. For sim-
plicity we consider a spectrum with a single line at
zero frequency which decays in t1 as e−t1/T2 , and that
S/Nptp = α/β at t1 = 0. In the indirect dimension
the signal-to-noise of the slice through this peak at
zero frequency is simple to determine, remembering
that the Fourier transform amplitude at zero frequency
is the integral of the time domain signal. Summing
the noise gives a noise amplitude

√
M larger, while

summing the signal gives a result dependent upon T2.
The resultant S/Nptp of the slice in the 2D spectrum
is thus

(S/Nptp)slice =
α

M−1∑
n=0

(e−�t/T2)n

β
√

M
= α

β
√

M
=

(e−�t/T2)M − 1

e−�t/T2 − 1
, (17)

where the summation has been evaluated using the fa-
miliar rule for the sum of a geometric series. This can
be cast in a more compact form by expressing the t1
acquisition time in units of T2 using M�t = QT2 to
give

S

Nptp

= α

β
√

M

e−Q − 1

e−Q/M − 1
≈ α

β

(1 − e−Q)
√

M

Q
. (18)

The last step follows the reasonable assumption
that M is many times Q. Thus the S/Nptp of a slice
in a 2D spectrum acquired using M points in t1 is√

M times the signal-to-noise α/β of the spectrum in
the first t1 point, multiplied by a correction factor of
(1 − e−Q)/Q to account for the decay of the signal
during t1. For a typical experiment Q might equal 3
and M = 1024, the slice through the τm = 0 auto peak
has a S/Nptp ∼ 10 times that of the spectrum from the
first t1 point. Hence, if a signal for a single line in the
first t1 point has a S/Nptp of 10, the S/Nptp of the
auto peak will be ∼100 with 1024 t1 values, which we
take to be a reasonable experimental S/Nptp level to
achieve.

As a point of calibration we quote some numbers
for solid state NMR sensitivity from our experience
with a modern 800 MHz instrument. Using a sample
occupying only 6.5 µl, i.e., less than 4 mg of protein,
the 13C resonance for a single methyl group at natural
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Figure 5. Signal-to-noise of 10 for 1D 13C spectrum of ubiquitin.
Inset: magnification of the ile23 methyl carbon at 7.8 ppm. The
noise to the right of this peak is shown in the inset on a 10× scale.

abundance in hen egg white lysozyme (15 kD) can be
observed in a 1D experiment with a S/Nptp of 3:1 in
80 000 scans (33 h of signal acquisition, line width
∼0.3 ppm). This translates to a S/Nptp of 100:1 in the
2D plane for a 100% 13C-enriched sample in a similar
amount of time using 86 scans per each of 1024 t1
points with 1.5 s recycle delay.

To connect to our simulations the S/Nptp must be
recast in terms of an r.m.s. description of the noise,
S/Nσ. When the fluctuation of noise values is spe-
cified as a statistical standard deviation of a Gaussian
distribution, it is empirically observed that the two for-
mulations are related by a factor of five (Ernst et al.,
1992):

Nptp = 5 × Nσ. (19)

Therefore when a signal-to-noise value specified as
S/Nσ of 500 is used in our computations, the reader
may correlate this to an experimental S/Nptp through
a slice in the 2D spectrum of 100, or approximately
10 in the 1D spectrum corresponding to the first point
in t1. Figure 5 shows a simulated 1D 13C spectrum of
ubiquitin at this noise level.

Simulations, measured rates, and corresponding
distances

The calculations described below require repeated
transformation of the magnetization matrix into and
out of its eigenbasis to yield a rate matrix (Equation
15), a computation that scales as n3. In some in-
stances we have reduced the set of atoms used in the
simulations to those of representative molecular seg-

ments to achieve more manageable matrix sizes. For
the 15N and exchangeable-only proton cases, all 105
nitrogen nuclei and all 137 such protons respectively
in ubiquitin are used. In the 13C case the calculations
include all 101 carbon nuclei from residues 1 to 20 of
ubiquitin (MQIFVKTLTGKTITLEVEPS), a molecu-
lar segment which folds as two anti-parallel β-strands
linked by a Type I turn. Simulations on exchange-
able plus methyl protons use the 95 such protons from
residues 1 to 30 (1-20+DTIENVAKIQ) which adds an
α-helix with close contacts to the previously described
β-sheet. For expediency methyls are treated as static
triads of distinct protons.

To investigate the effect of finite signal-to-noise
and internuclear distribution on the precision of dis-
tances derived from an experimental 2D exchange
spectrum, simulations were carried out using the
above computational model, summarized in Figure 6,
on the molecular segments noted above. All code and
simulations were written in C/C++ and Perl with a
heavy dependence on the Perl Data Language pack-
age run under Redhat Linux 7.1. A PDB structure file
(including H atoms generated as described earlier) is
used as input to routines that generate the rate matrix
R. The rate matrix is used to compute the propagator
P(τm) for each of a series of mixing times at several
noise levels. Experimental data is simulated by adding
scaled Gaussian random noise. This is achieved by
generating a Gaussian random number (gran) with a
normal probability distribution (mean = 0, standard
deviation = 1) and scaling it to fit the desired S/Nσ:

Nij = gran

S/Nσ

. (20)

Having been corrupted by the addition of noise, the
simulated data must be scaled as if from an authen-
tic experiment. We first average about the diagonal
to render the matrix symmetric, and renormalize the
result S†(τm) according to earlier discussion so that
the sum of all elements equals the number of spins n:

S†(τm)ij = n

2
· SN (τm)ij + SN(τm)ji

n∑
r=1

n∑
s=1

SN (τm)rs

. (21)

The ‘measured’ rate matrix R† is then calculated as
per Equation (15) from the adjusted simulated data:

R† = 1

τm

ln[S†(τm)]. (22)

Experimental rates are translated to experimental dis-
tances according to Equations 1 and 3, and relative
fractional differences from true rates and true inter-
nuclear distance are calculated by
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Figure 6. Flowchart outlining the computational procedure used in Monte Carlo determination of the precision of dipolar coupling rate
measurements.

�Rij = Rij − R
†
ij

Rij

and �rij = rij − r
†
ij

rij
. (23)

Evaluating how signal-to-noise affects the preci-
sion of rates and the derived distances from the pre-
ceding computation is achieved by performing this
calculation repeatedly, reseeding the added noise on
each repetition in a Monte Carlo fashion. This results

in a distribution of values �Rij and �rij for each pair
ij . Monte Carlo cycles are run 105 times, unless the
error ς(�Rij ) (see Figure 6) in the standard deviation
for all distributions σ(�Rij ) corresponding to contacts
where rij < 6 Å falls below 0.05 sooner.
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Figure 7. Sample distributions of �Rij corresponding to three dif-

ferent internuclear distances rij for 15N-15N at S/Nσ = 500 and
mixing time of 0.48 τ64.5. Data and fit for 2.93 Å (– • –), and fits
only for 3.96 Å (- - -), and 5.06 Å (· · · ).

Computational results

The data generated consists of a distribution of ‘meas-
ured’ fractional rate differences �Rij and correspond-
ing fractional distance differences �rij for each of
several thousand nuclear pairs ij . We make no ad-
vance assumptions regarding the probability distribu-
tions, but empirically find, as one might expect from
classical error analysis (Macura, 1995) based upon
analytic matrix gradients (Dellwo and Wand, 1993),
that the distributions fit gaussian profiles centered es-
sentially at zero with standard deviations σ(�Rij )

equal to that converged upon as per the flow chart in
Figure 6:

f (�Rij ) = 1

σ(�Rij )
√

2π
e

1
2

(
�Rij

σ(�Rij )

)2

. (24)

This is true in general for the entire range of spin sys-
tems investigated. Figure 7 shows some examples of
these distributions for homonuclear 15N contacts of
approximately 3, 4 and 5 Å. In accord with previous
observations in solution experiments, pairs of spins
separated by longer distances and having smaller cross
peak intensities correspond to larger fractional errors
in measured rates (Borgias and James, 1990; Suri and
Levy, 1995).

The standard deviations σ(�Rij ) provide a con-
venient single parameter with which to comprehens-
ively characterize each empirical f (�Rij ) distribu-
tion. We therefore focus upon σ(�Rij ) in the con-
tinuing analysis, but briefly note the correspondence
of these qualities in the �rij dimension. The ana-
lytic relationship between a given σ(�Rij ) and the
corresponding σ(�rij ) holds up to σ(�Rij ) of approx-
imately 0.25:

Figure 8. Standard deviation in distribution of relative meas-
ured rates σ(�Rij ) vs. internuclear distance rij for 15N-15N at
S/Nσ = 500 and mixing time of 0.48τ64.5. Curves are fit empiric-
ally to scaling factors ηavg for all data, ηlow to the data selected as
defining the lower boundary, and ηup to the data selected as defining
the upper boundary. Error bars are ±ς(�Rij ) (see Figure 6).

σ(�rij ) = 1
6σ(�Rij ) + 7

72σ(�Rij )2, (25)

where standard error propagation has been employed
with a higher order term (Bevington and Robinson,
1991). At larger error values, the asymmetry of the
�rij distributions inherent in Rij ∝ r−6

ij translates to
a departure from Gaussian with respect to both mean
and standard deviation.

It is informative to plot the correlation of σ(�Rij )

to internuclear distances for all nuclear pairs at each
signal-to-noise and mixing time value. Regardless of
the particular nuclear distribution, mixing time, or
noise level under study, the result is a plot similar to
that shown in Figure 8. Again, we make no assump-
tions that this correlation should take any particular
functional form, but the data is found to empirically fit
the simple function ηavgr

6
ij over short to intermediate

internuclear distances. The residuals of σ(�Rij ) val-
ues about the average become larger as rij increases,
an important quality not accounted for by ηavg. There-
fore scaled r6

ij curves are also fit to data selected to
define the upper and lower boundaries, with propor-
tionality constants ηup and ηlow respectively. A data
point is identified as defining the lower boundary if it
is the minimum of the following ten data points inclus-
ive, and is identified as defining the upper boundary if
it is the maximum of the previous ten points inclusive.
Alternatively, on a log/log plot, this data forms a linear
band with uniform width and slope of ∼6. The three η

scaling factors then correlate to the y-intercept of the
three parallel lines fit to all data, and the upper and
lower edges of the data band.

Closer inspection reveals that the data which
defines the upper versus lower boundaries of the data



250

envelope correspond respectively to contacts between
nuclei in relatively dense (e.g., Cα) versus dilute (e.g.,
carbonyl and termini of side chains) local densities.
The broadening of the data envelope, i.e., the differ-
ence in σ(�Rij ) between dilute nuclei versus tightly
clustered nuclei, is more profound at longer mixing
times and lower signal-to-noise levels. These three
parameters fit least well at very early mixing time
when the data envelope is most narrow. As mixing
time increases, the upper boundary becomes less well
defined and is hence less well characterized by the
single parameter ηup. This characterization neverthe-
less provides a reasonable means to condense the
effects of noise and mixing time on the precisions of
thousands of exchange-matrix elements resulting from
the Monte Carlo analysis.

Figures 9–11 show in panels C the time-evolution
of ηavg, ηlow and ηup aligned with the time-evolution
of selected auto peaks (panels A) and cross peaks
(panels B) for 13C-13C, 15N-15N and 1H-1H homo-
nuclear spin exchange experiments respectively. The
more rapid cross peak build-up and concomitant rapid
autopeak decay curves correspond to the most tightly
coupled pairs of spins. Bunching of the magnetiza-
tion kinetics curves is pronounced for the 13C-13C
plot (Figure 9) and the 1H-1H (Figure 11) which mir-
ror the discrete clustering of nuclear distribution in
Figures 1A and 3A. The corresponding time courses
for 15N-15N magnetization kinetics are more evenly
distributed. While the plot in Figure 10B would in-
dicate gaps in the 15N build-up kinetics, this is an
artifact of the particular set of nuclei chosen and is not
seen when a larger sample of 15N centers are chosen.
The distinct gap seen in Figure 9B persists no mat-
ter how large the set of 13C nuclei. At longer mixing
times the magnetization matrix elements approach a
common value as spin diffusion evenly distributes all
magnetization. The eigenvalues of S†(τm) then be-
come ill-defined and a unique rate matrix becomes
impossible to determine by Equation 22.

Consequences for structure determination by solids
NMR

Interpretation of the Monte Carlo results and analysis
provide a more substantial basis upon which to com-
pare the merits of different isotopic labeling schemes
than the qualitative assessment offered in the first sec-
tion of this paper. How does variability in nuclear
spatial distribution and finite signal-to-noise affect the
measurement of rates, and how can we approximate

Figure 9. 13C-13C magnetization curves and precision of coup-
lings. (A) Autopeak magnetization and (B) crosspeak magnetization
for carbon in ile13, and (C) precision of meaningful couplings vs.
duration of mixing time for all carbons in residues 1–20. Scal-
ing factors η for all mixing durations and noise levels used: (�)
S/Nσ = 250, (�) S/Nσ = 500 (shaded), and (♦) S/Nσ = 1000.
Upper (ηup) and lower (ηlow) boundary scaling factors are plotted
with lines drawn through the respective data style.

these effects for other labeling schemes without weeks
of computational work?

With respect to the raw data, the solution of Equa-
tion 22 frequently results in negative values for ‘meas-
ured’ rates for nuclear pairs with low signal-to-noise.
While mathematically valid, these values correspond
to non-physical f(�Rij ) density greater than 1, and do
not correspond to real �rij . Similarly, �Rij values
less than −1 correspond to ‘measured’ rates that are
greater than double their true rates. Distributions with
standard deviations σ(�Rij ) over 0.25 have significant
density outside of the −1 to 1 limits, and therefore
correspond to rates not reliably measured.

For nuclear pairs with σ(�Rij ) less than 0.25,
characterization of each Gaussian distribution f(�Rij )

by its standard deviation σ(�Rij ) permits convenient
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Figure 10. 15N-15N magnetization curves and precision of coup-
lings. (A) Autopeak magnetization and (B) crosspeak magnetization
for nitrogen in residues 9–13; and (C) precision of meaningful
couplings vs. duration of mixing time for all nitrogen centers. Scal-
ing factors η for all mixing durations and noise levels used: (�)
S/Nσ = 250, (�) S/Nσ = 500 (shaded), and (♦) S/Nσ = 1000.
Upper (ηup) and lower (ηlow) boundary scaling factors are plotted
with lines drawn through the respective data style.

use of the error function to apply confidence levels
to different finite deviation limits. The measured rate
for an internuclear contact with a true rate Rij has
68% probability of lying within ±σ(�Rij )Rij and
95% probability of lying within ±2σ(�Rij )Rij . For
example, at 500 S/Nσ level and 0.48τ64.5 mixing time,
a homonuclear nitrogen contact at 4 Å might have a
σ(�Rij ) value of 0.1, and measured distances would
be 68% likely to lie between 3.94 and 4.07 Å, and 95%
likely to lie between 3.88 and 4.15 Å, with the expecta-
tion value being essentially the true value. Meanwhile,
a homonuclear carbon contact at the same signal-to-
noise, analogous mixing time (0.45τ2250), and same
internuclear distance might have σ(�Rij ) equal to 2.5,
and would not likely be observed or reliably measured.

Figure 11. Exchangeable 1H-1H magnetization curves and preci-
sion of couplings. (A) Autopeak magnetization and (B) crosspeak
magnetization for exchangeable protons in residues 9–11; precision
of meaningful couplings vs. duration of mixing time for (C) all
exchangeable protons and (D) all exchangeable plus select methyl
protons in residues 1–30. Scaling factors η for all mixing durations
and noise levels used: (�) S/Nσ = 250, (�) S/Nσ = 500 (shaded),
and (♦) S/Nσ = 1000. Upper (ηup) and lower (ηlow) boundary
scaling factors are plotted with lines drawn through the respective
data style. Note that the protons whose magnetization curves are
plotted in (A) and (B) are common to both the pools of protons and
molecular segments used, and the build-up curves for these nuclei
are nearly identical for both cases.



252

Figures 9C, 10C, 11C and 11D summarize the hun-
dred analyses exemplified by Figure 8 over all noise
levels, mixing times, and chosen labeling schemes. We
see, in accord with analogous observations in solution
NMR (Olejniczak et al., 1986), that at short mixing
durations limited signal-to-noise blurs the variation
in crosspeak intensities which hold all the informa-
tion and leads to large errors in measured rates. Long
range, small couplings are the most affected, where
the variation in precision becomes even greater.

At longer mixing times, data imprecision increases
with an attendant increase in difference between ηup
and ηlow. Several observations show that these phe-
nomena are a direct consequence of spin diffusion.
First is the correlation between the broadening and
the degree to which indirectly transferred magnetiz-
ation becomes an increasing component of a given
nuclear pair’s build-up of magnetization at longer mix-
ing times, as indicated by a departure from initial
linearity in Figures 9–11, panel B. This correlation
is further substantiated by identifying the couplings
which define the upper and lower boundaries of the
σ(�Rij ) vs. rij correlations (Figure 8). The scaling
factors ηup (plotted as the upper line of each S/Nσ

set in Figures 9C, 10C, 11C and 11D) reach a min-
imum at a relatively early mixing time, consonant
with the initial onset of relayed magnetization for
more densely packed nuclear pairs. Comparatively, the
factors ηlow (plotted as the lower line of each S/Nσ

set in Figures 9C, 10C, 11C and 11D) reach a min-
imum at longer mixing time, consonant with a later
onset of relayed magnetization for more dilute nuclear
pairs. Indeed, the phenomenon is most pronounced
by noting proton precisions and timings when methyl
protons are included (Figure 11D) in contrast to when
only exchangeable protons are used (Figure 11C). Not
only does the entire set of measured distances gain
precision when methyl protons are left out, but the
difference between the upper and lower boundaries
is less, and mixing time can be extended to longer
duration.

The average scaling factors ηavg (see Figures 9C,
10C, 11C and 11D) then appear to be a function
of both signal to noise, as well as the degree to
which indirectly transferred magnetization contributes
to a given internuclear contact’s crosspeak growth.
At early mixing times the precision is poor, owing
to low signal to noise of experimental data, whereas
at longer mixing times crosspeaks are more intense
but the precision is poor owing to spin diffusion.
Precision is best between the two regimes where a

balance between the two factors is reached, and this
is deemed the optimum mixing time. These optimum
mixing times are 0.45τ2250 for homonuclear carbon,
0.48τ64.5 for homonuclear nitrogen, 0.4τ16k for homo-
nuclear exchangeable only protons, and 0.24τ16k for
homonuclear exchangeable plus select methyl protons.
However, as discussed by Macura (1994), it may be
appropriate, particularly when signal to noise is low,
to perform mixing experiments at several mixing times
so as to achieve the lowest error possible for all nuclei
in a spin system.

This leads to one of our principle conclusions. A
comparison across Figures 9C, 10C, 11C and 11D re-
veals the relative precisions of measurement afforded
by each isotopic labeling scheme. Considered at the
optimum mixing time and common noise levels, ηavg
serves as an indicator of relative precisions of rate
measurement for all nuclear pairs at short (∼2Å) to
intermediate (4–6 Å) distance. At each signal-to-noise
level used, ηavg for homonuclear 15N is 34-fold lower
than ηavg for the homonuclear 13C analysis. Similarly
ηavg for exchangeable protons is 6.7-fold lower than
that for 13C, and ηavg for exchangeable plus select
methyl protons is only 3.5-fold lower.

It is precisely the differential local densities and
their effect on the precision of rate measurement that
we wished to address with the recasting of internuclear
contacts as the previously defined ratios �. We indeed
find a tighter, albeit nonlinear correlation (plotted in
Figure 12), between the calculated σ(�Rij ) and these
ratios, than we do with either the internuclear dis-
tances (such as in Figure 8) or the coupling constants
(not shown). This is likely grounded in the fact that
the ratios are more closely correlated to the dispersal
of magnetization among coupled groups of spins than
either the internuclear distance or dipolar coupling
constant alone indicate. In fact, the better correlations
in Figure 12 show the more densely grouped points
define a lower boundary σ(�Rij ) = (� · S/Nσ)

−1.
This correlation is best for the uniformly labeled

13C and 15N homonuclear experiments, and weakest
for the homonuclear experiments among exchangeable
protons, improving somewhat when select methyl pro-
tons are added to the pool. Closer inspection of the
exchangeable proton pairs above a ratio � of 0.02 and
above σ(�Rij ) of 0.25 in Figure 12C, indicates that
these contacts are either arginine side chain protons
which are not included in the reduced molecular seg-
ment used to generate Figure 12D, or are exchangeable
protons which are pushed to much lower ratio values
when select methyls are included (most dramatically
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Figure 12. Correlations of σ(�Rij ) to dipolar coupling ratio �ij

at S/Nσ = 500 for (A) 13C at 0.45τ2250, (B) 15N at 0.48τ64.5,
(C) exchangeable protons at 0.44τ16k, and (D) exchangeable plus
select methyl protons at 0.24τ16k. Annotations indicate � ranges
dominated by structurally meaningful internuclear contacts. Error
bars are ±ς(�Rij ), and curves are σ(�Rij ) = (S/Nσ · �)−1.

for contacts involving a valine backbone proton). The
implications of Figure 12 are explored further in the
discussion.

The impact of nuclear distribution-dependent spin
diffusion on rate measurement is perhaps made most
clear by the 2D spectral simulations for full-size ubi-
quitin in Figures 13 and 14. In addition, these spectra
help to illustrate the complications arising from lim-
ited resolution and spectral dispersion, which we have
so far ignored in our analysis. Shifts are based upon
ubiquitin shifts from solution, but were manually ad-
justed such that all crosspeaks in the featured slices
represent exchange with a single autopeak. The two
dimensional plots assume an 800 MHz 1H frequency,
line widths of 0.5 ppm for carbon and 0.25 ppm for
nitrogen, and incorporate the 2D S/Nσ level of 500
as discussed. The indicated slices are shown below
the 2D spectrum with this noise level and line width.
For each simulated slice a companion plot is provided

using line widths a factor of 4 more narrow and having
no noise.

By cross-referencing the labeled peaks in the fea-
tured slices with Tables 1 and 2, it is clear that it will be
difficult to measure meaningful couplings among gen-
erally densely distributed nuclei like carbon, whereas
meaningful couplings among less dense nitrogen nuc-
lei appear more accessible. Of the numbered carbon
peaks (Figure 13), only peaks 6 and 7 (not shown)
on the lys27 slice, and 4, 5 and 6 on the ile13 slice,
correspond to distant tertiary contacts. Meanwhile, all
of the labeled nitrogen peaks in Figure 14 are mean-
ingful secondary and tertiary contacts, with all but
peaks 1 and 2 in each slice being non-sequential. Fig-
ure 13 also shows a consequence of mixing for too
long in addition to that shown in Figures 12–14. Not
only do measured distances lose precision because of
spin-diffusion, but many more peaks gain signific-
ant signal to noise in an already-crowded spectrum,
making accurate measurements even more difficult.

Discussion

Previous studies have focused upon only very small
model spin systems native to protein to analyze spe-
cific recoupling methods in careful detail, or used a
collection of spins more representative of full protein
for the purpose of exploring more general concerns
such as the effect of finite resolution on solid state
NMR resonance assignment (Tycko, 1996). Our ap-
proach has been intermediate to these two extremes,
analyzing a generalized spin exchange experiment in
the context of large spin systems native to protein to
explore the effect of nuclear distribution and noise on
solid state NMR structure data.

Ubiquitin contains 378 carbons, 105 nitrogens, 137
exchangeable protons, and 105 select methyl protons.
Six angstroms is a distance regarded by some workers
as the limit of measurement by magnetization-transfer
in solution NMR experiments (Clore and Schwieters,
2002). Within this restriction there are 3781 homo-
nuclear carbon pairs, 274 homonuclear nitrogen pairs,
391 exchangeable proton pairs and 1883 exchangeable
plus methyl proton pairs separated spatially by less
than 6 Å and covalently by more than two bonds.

It is not enough, however, to judge the potential
contribution of distance constraints by a given spin
system to structure calculations simply by enumer-
ation of these meaningful contacts. The ratios �ij

provide a reasonable means to gauge the expected pre-
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Figure 13. 13C -13C spectral simulations. Top: 2D spectrum at
optimum mixing time for full protein (0.45 τ2250). Middle and
bottom: indicated slices at the optimum and a longer mixing time
(0.81 τ2250). ‘A’ indicates the autopeak, and numbered crosspeaks
correspond to nuclei listed in Tables 1 and 2. Slices with realistic
line widths are extracted from the 2D spectra, slices with artificially
narrowed line widths are provided simply for illustration.

Figure 14. 15N –15N spectral simulation. Top: 2D spectrum at op-
timum mixing time for full protein (0.4864.5). Bottom: Slices taken
through the indicated amide nitrogen resonances. ‘A’ indicates the
autopeak, and numbered crosspeaks correspond to nuclei listed in
Tables 1 and 2. Slices with realistic line widths are extracted from
the 2D spectra, slices with artificially narrowed line widths are
provided simply for illustration.

cision of rate measurement for a given internuclear
contact. The limits of relevance of these ratios is
demonstrated in Figure 12 following the more quant-
itative assessment of the import of local nuclear dis-
tributions on solid state NMR structural data provided
by the Monte Carlo analysis.

This relevance appears to hinge upon the nature
of the spatial distribution of nuclei in the spin sys-
tem. Homonuclear carbon and nitrogen in respect-
ively uniformly labeled protein both have reasonably
homogenous spatial distributions, albeit at very dif-
ferent densities. This is apparently important for the
tight empirical relationship between the numerically
determined σ(�Rij ) value and calculated ratio �ij

plotted in Figures 12A and 12B.
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The homonuclear proton experiments considered
present an interesting variation on spin system dis-
tribution. If exchangeable backbone and single ex-
changeable side-chain protons only were to be con-
sidered, results similar to nitrogen would be expected.
However, in the case of arginine, lysine, asparagine,
and glutamine, the side chain protons are present in
very tight clusters relative to the rest of the distribu-
tion. The same is true of the select methyl protons
when they are included. In this light, the inclusion of
the select methyl group protons has interesting con-
sequences. On one hand the additional proton clusters
actually help to provide a more uniform spatial dis-
tribution of nuclei over exchangeable protons only,
leading to a better σ(�Rij ) vs. �ij correlation in
plots 12D compared to 12C. On the other hand the
additional methyl protons, while ostensibly providing
more tertiary contacts, serve to exacerbate spin diffu-
sion problems, at least when treated in the simplistic
fashion employed here. This is reflected in the increase
of analogous η scaling factors between Figures 11C
and 11D. Hence, the recasting of dipolar coupling con-
stants to � ratios as in Figures 1C, 2C and 3C, to the
extent that the spatial distribution renders the ratios
relevant, provides a qualitative measure for a given in-
ternuclear pair’s potential to contribute a constructive
distance constraint.

Next we seek the means to judge different ra-
tio values. How large must a coupling’s ratio be,
or how narrow must a coupling’s distribution of ex-
perimentally derived distances be to be useful as a
structure-refinement constraint? We pass no definite
judgment ourselves, but do explore the considerations
that govern the decision. One would certainly wish to
set the bar of confidence high, but not so high that too
many calculated distance constraints are so loose that
they contribute negligibly in structure refinement. The
σ(�Rij ) values of 0.25 have already been discussed
as being the upper limit whereby finite internuclear-
distance constraint limits may be expected, and more
stringent limits are imposed by accepting only con-
tacts that demonstrate even lower values.

The correlations shown in Figure 12 indicate that
at the S/Nσ = 500 level, a σ(�Rij ) of 0.25 can only
be realized by internuclear contacts with � values of
approximately 0.01 (or higher for the least homogen-
ous of nuclear distributions, in this case exchangeable
only protons), and a σ(�Rij ) of 0.1 correlates to a ra-
tio of 0.02 (or higher for exchangeable only protons).
Thus ratios of 0.02 translate to distance precisions of
approximately rij +1.8%/ − 1.6% at 68% confidence

level and rij +3.8%/− 3.0% at 95% confidence level.
Ratios of 0.01 correspond to distance precisions of ap-
proximately rij +4.9%/ − 3.7% at 68% confidence
level and rij +12.2%/ − 6.5% at the 95% confidence
level. These σ(�Rij ) values are of course specific
to the noise level used. If higher signal-to-noise data
is acquired lower � values can be accessed while
reliably remaining within these confidence intervals.

Concomitant with the significantly asymmetric rij
confidence interval limits are expectation values which
differ significantly from their true values, introducing
inaccuracy as well as imprecision to structure calcu-
lations. Some perspective of these ranges is available
by noting that precisions on isolated spin pair distance
measurements have been made using solids NMR at
rij ± 2% for distances as long as 5 Å (Costa et al.,
1997), and arguably even up to 8 Å (Holl et al.,
1992). The current wisdom for CNS-type refinements
(Brunger et al., 1998) in both liquids (Clore and Gron-
enborn, 1998) and solids (Castellani et al., 2002) NMR
is to broadly bin cross-peaks into three or four classes.
With flat potential across the range, in the above terms
these classes span rij ± 20% for ‘strong’ couplings to
rij ± 54% for ‘very weak’ couplings.

If the couplings with ratios below the 0.02 or
0.01 � thresholds should not be depended upon, we
must assess how much structural information is avail-
able from the remaining reliable data. For this we
return to the discussion presented in the first half of
this paper, the distribution of ratios featured in Figures
1–3, panels C, and the contact maps in Figure 4, all
of which anticipated these threshold � values. Addi-
tionally, Figure 15 highlights three residues in each of
two β-strands with meaningful contacts above a ratio
of 0.01 drawn explicitly. The implications of these �

thresholds for each specific isotopic labeling scheme
and the spatial distribution that it represents follows.

In the homonuclear carbon case, all contacts that
meet even the lower ratio threshold (0.01) are intra-
residue (Figure 4B). While the explicit contact shown
in Figure 15A and the few others like it may help
to constrain side chain conformation, it is difficult to
imagine that these couplings together with the much
stronger one- and two-bond dipolar couplings would
constrain the segment into even the correct secondary
structure. It is even more difficult to imagine fold-
ing of the strands into the correct tertiary structure on
the basis of these constraints alone. Should the reader
wish to find another threshold value more appropri-
ate, the individual contacts given for selected nuclei in
Tables 1 and 2 may be useful. However, even though
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Figure 15. Molecular excerpts. Three residues from each of two anti-parallel β-strands (val5 lys6 thr7 – lys11 thr12 ile13) are depicted together
with internuclear contacts of greater than two-bonds covalent separation and dipolar ratio greater than 0.01. (A) 13C, (B) 15N, (C) exchangeable
protons, and (D) exchangeable plus methyl protons.

the residues selected were those with sidechains dir-
ected inwards from the protein surface, the α-helical
sidechain carbon makes the most meaningful contacts
only at very low couplings. The β-sheet sidechain
carbon does not fare substantially better.

The homonuclear nitrogen case, in contrast, offers
many more structurally meaningful couplings at ratio
values even above 0.02, at which point the strongest
couplings (between sequential backbone amides) are
themselves useful. The impact of this on structure
refinement is suggested by the contact plots in Fig-
ures 4C and 4D, as well as the explicitly indicated
contacts for the molecular segment in Figure 15B. It
is easier to believe that there are enough sufficiently
precise 15N contacts to constrain this segment into the
correct secondary and tertiary structure. It should be

noted that the absolute value of the homonuclear ni-
trogen couplings are very small, which would require
a mixing time substantially longer than one’s general
experience with 13C. Our experience with nitrogen
however suggests that the 15N relaxation times in pro-
tein are sufficiently long, being the order of a minute,
that such experiments are feasible. Measurements of
this type have in fact been used to provide a handful of
15N-15N distance constraints in the recent report of the
structure of an SH3 domain (Castellani et al., 2002) by
solid state NMR.

The accuracy of the homonuclear experiment con-
ducted on select protons appears to depend on whether
or not methyl protons are included. One might ex-
pect that the inclusion of methyl protons would benefit
structure efforts, as it is residues with aliphatic side-
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chains, frequently those with methyls, which pack the
protein core. However, we see in Figures 11C and
11D that the inclusion of methyls causes an apparent
loss in precision of all inter-proton distances, such that
the data offer precisions closer to homonuclear carbon
than nitrogen. When only exchangeable protons are
used, the precision of the data is more similar to homo-
nuclear nitrogen. Indeed, mixing among exchangeable
protons alone has yielded useful distance constraints
as demonstrated recently by Reif et al. (2003). It is
possible then that the more precise, albeit fewer in-
ternuclear contacts afforded by a mixing experiment
using only exchangeable protons is a more attractive
prospect than the same experiment which adds the
select methyl protons to the spin system. To some ex-
tent this inference is a consequence of our simplistic
handling of methyl groups. It remains to be examined
whether a more realistic model for the protons in a ro-
tating methyl group, which recognizes them as on av-
erage being isochronous and magnetically equivalent,
would come to a different conclusion. Given the po-
tential tertiary contacts these spins could provide, the
development of better treatments for methyl groups in
proteins will be an important next step in solid state
NMR of proteins.

Conclusion

The approach presented in this paper is useful for
evaluating the suitability of an isotopic enrichment
scheme for obtaining distance constraints by solids
NMR, and for estimating the signal-to-noise required
to achieve a desired level of precision. It is clear from
our results that dipolar truncation effects aside (Ho-
hwy et al., 2002), the isotopic distribution needs to be
dilute enough so that the length scale one wishes to
probe is comparable to the shorter inter-spin distances
in the distribution. If this constraint is not satisfied
by the nuclear distribution, the relay of magnetization
by spin diffusion coupled with instrumental noise rap-
idly degrades the precision with which the important
distances can be measured. This makes 15N or ex-
changeable 1H the most attractive isotopic enrichment
patterns to use in proteins for homonuclear distance
measurements. Only by extensive dilution can 13C
be made to compete in this regard, as demonstrated
recently (Castellani et al., 2002). In this type of an
approach an additional uncertainty may be introduced
in that the isotopic incorporation can have significant
residue dependent variability. Application of the com-

putational method developed in this paper would be
a good entry to estimating the additional uncertainty
introduced into distances determined with this type of
sample.

The recasting of dipolar coupling constants as �

ratios offers an optimistic estimation of anticipated
precision of coupling rate measurement at a given sig-
nal to noise. The number and precision of structurally
useful dipolar contacts above a selected ratio threshold
helps to identify those nuclear distributions which hold
the greatest potential utility to solid state NMR struc-
ture determination. While our approach is generally
applicable, our conclusions regarding the specific iso-
topic variations considered are qualitative only; we
explicitly leave to future work a quantitative assess-
ment of the sensitivity of structure refinement upon the
number, precision, and accuracy of measured distance
constraints. The approach should find use in providing
a realistic estimate of the signal to noise required to
obtain a desired precision, and thereby aid the exper-
imenter in differentiating feasible experiments from
those which are not. With the proper calibration this
computational approach can also be used to identify
the range of optimum mixing times for spin exchange.

While our results would indicate that homonuc-
lear solid state dipolar exchange experiments using
15N-15N couplings or 1H-1H couplings in deuterated
back-exchanged protein will provide the best preci-
sion in distance measurement, this conclusion is based
on equivalent signal to noise. Comparison between
13C detect, 1H detect and 15N detect experiments
is not as straightforward in solid state NMR as in
solution NMR. For the moment 15N is still largely
directly detected when resolution is at a premium.
Although the apparent precision afforded by the 15N
dipolar exchange experiments is high, achieving the
signal to noise required is not straightforward for small
samples. However, if lower precision is satisfactory,
the requirements on signal to noise become signific-
antly less stringent. As indicated in figures 10 and 11,
the precision of the 15N exchange experiment is about
10 times that of the 1H-1H exchange experiments. The
two experiments can however be made equivalent if
the signal to noise of the 15N data is likewise re-
duced by a factor of 10. This is a regime in which
such experiments are quite feasible even with dir-
ect 15N detection. The determination of whether 15N
or 1H exchange will ultimately be more useful then
is an open question, one whose answer will depend
on a number of very different experimental factors.
Regardless of the outcome, the work presented here
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demonstrates how to optimize these sorts of exper-
iments to achieve the highest precision that can be
experimentally achieved.

Although not specifically addressed in the present
work, heteronuclear measurements using 13C-15N di-
polar couplings have some advantages in the realm of
providing distance constraints for proteins and pep-
tides. While the spin dynamics are quite different, and
not directly amenable to the present analysis, some
qualitative lessons may be transferred. In uniformly
labeled samples we observe that the problem of spin
diffusion is as much one of dilution of the available
magnetization, as it is of magnetization relay short
circuiting transfer via desired long-range pathways.
In any experiment where magnetization is transferred
between 15N and 13C nuclei, for instance by TEDOR
(Michal and Jelinski, 1997; Jaroniec et al., 2002), al-
ways having a directly bonded nearest neighbor will
have a negative impact on the precision of the experi-
ment. While relay transfer is not a concern, reduction
of the available magnetic moment for transfer to more
distant coupling partners by leakage into less interest-
ing nearest neighbor sites can be a problem for such
techniques. The advantages of modifications of the
isotopic labeling pattern, or use of selective transfers
to circumvent these problems, can then be evaluated
on the basis of analogous coupling ratios and contact
maps as described in the first half of this article.

New isotopic enrichment schemes and solid state
NMR methods are being applied to small proteins at a
rapid pace, each with its own merits and detractions. In
comparing different approaches one has to address not
only issues of sensitivity and resolution and whether
through-space contacts can be observed, but also how
accurate the distance constraints so obtained are. The
Monte Carlo method used herein provides a means
of critically comparing competing techniques inso-
far as simple spin exchange is an accurate model of
the spin dynamics. Continued advances in computing
power and techniques for simulating large complex
spin systems will eventually make it possible to ad-
apt this general approach to address the precision of
distance measurements using more sophisticated mix-
ing schemes which are both more complex and more
realistic.
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